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Abstract. We show the importance o f  the quadratic term in the lattice action for Monte 
Carlo simulations. The effects of this action modification are analysed through the calcula- 
tions o i  some simple non-relativistic quantum systems. 

Feynman introduced the path integral formulation of quantum mechanics in 1948 [ 11. 
Since that time path integrals have been used in many areas of physics. In an imaginary 
time formulation, Feynman’s path integral reveals a connection between classical 
statistical mechanics and  quantum theory. In particular, in this formulation, the 
quantum propagator is mathematically equivalent to a statistical partition function. 
This analogy is the basis for a wide application of Monte Carlo techniques in simulation 
of different quantum systems. The simulation is actually the numerical evaluation of 
path integrals. Although it seems that the main results have been achieved in lattice 
gauge field theories, it is very interesting to also test these ideas in simpler models, 
such as one-dimensional Schrodinger systems, as was shown by Creutz and Freedman 
[ 2 ] .  The main reason for this interest is the desire for a better understanding of the 
workings of the Monte Carlo method. 

In this paper we communicate a result about the importance of the quadratic term 
in the lattice action for non-relativistic quantum systems, when the partition function 
is calculated by using the Monte Carlo method. Under specific conditions, this 
modification significantly reduces the dimension of the lattice considered or, 
equivalently, the dimensions of computed integrals. We show that the quadratic term 
in the lattice action is important when the potential is a steep function in the lattice 
spacing units. However, this rapid change should take place in the domain where the 
position probability for the moving particle is appreciable. Also , this modification is 
invariant under the transformations which are symmetries of the Feynman path integral 
procedure. 

We start by a series expansion of the transition amplitude for a short time 
period e 

(1) K(x,  x’; E )  = 6 ( x ‘ - x ) - i ~ ( x ’ / ~ l x ) + $ ( - - i ~ ) ~ ( x ’ I ~ * l x ) + .  . . 
where for the one-dimensional system we assume 

( x ’ l ~ l x ) =  - [ t p ’ + i (  V(x’)+ ~ ( x ) ) ]  exp[ip(x‘-x)] I z”f: 
and 

( x ‘ l ~ ’ J x )  = -[ap4++f( ~ ( x ’ )  + ~ ( x ) ) ~ p * +  ~ ( x ’ )  V(x)] exp[ip(x‘- x)]. I:: (3) 
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By inserting (2)  and (3) in the transition amplitude given by ( l ) ,  we obtain an expansion 
which includes the quadratic term in E :  

+ + ( - i ~ ) ~ [ f p ~ + + (  ~ ( x ’ )  + v(x))’p’+ ~ ( x ’ )  ~ ( x ) ]  

+. . . }  exp[ip(x’-x)]. (4) 

On the other hand, one can formally express the transition amplitude by the action 
modification through the E *  term in the form 

~ ( x ,  x‘; E )  = I:: -exp(ip(x’-x)-iE[;$++( v(x’)+ v(x))+~EQ]}.  ( 5 )  

Comparison of (4) and (5) gives the following expression for the modification Q :  

Q = ;[;( V(X’) - V ( X ) ) l 2 .  (6) 

Now, in the Euclidean (imaginary time) version of the discrete time lattice, the transition 
amplitude given by (5) with Q defined by (6) becomes 

F (  x’, t ‘  I x, t )  = (Dx)  exp( -S) I ( 7 )  

where 

s = S”+ S 2 .  ( 7 a )  
The standard action So is 

and the modification term Sz, which is formally quadratic in the lattice spacing a, is 

( 9 )  S’ = fa2 c [+( V(X,)  - V(X,-]))I2. 
I 

Here we have introduced the standard notation for a discrete lattice: 

t,+l - t, = a/i  

x(t,) = x, 

t ‘ - t =  N E  

and j = 0 , .  . . , N.  

term S, is negligible if 
In the naive a += 0 limit, the action S simply becomes So. Also, the modification 

By using the fact that ((x, -x,-,)*) = a / m  in the a -+O limit, we can recast the condition 
(11) in the form 

a31(d/dx) V(x)12 
4mll+2aV(x)l  << 1. 
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The generalisation of the condition (12a) for the three-dimensional case is 

It is interesting to notice the invariance of the condition (12a) under the scaling 
transformations 

XI= A X  V'(x') = gV(x) 

m ' =  m/gA2 a '=  a / g  
(13)  

where A and y are arbitrary parameters. It is very easy to check that the ground-state 
energy E shows the scaling law under the transformations given by (13) ,  namely 

E'=gE. 

As a demonstration of the effects of the modified action in practical Monte Carlo 
simulations we present some results for the ground states of the Coulomb and exponen- 
tial potentials. Our approach is based on the Metropolis procedure described by Creutz 
and Freedman [2] which we extend to our  complete three-dimensional calculations. 

For the Coulomb potential V = - c / r ,  with the parameters c = 1,  a = 0.15, N = 500 
and particle mass m = 2, the condition (12b) is not satisfied in the interval (0 ,  frB) ,  
where rB is the Bohr radius. Consequently, for the lattice dimension N -- lo3 and the 
respective U, the equilibrium in the simulation is not reached by using the action So. 
It is reached by using the modified action S. In this equilibrium we performed 
calculations by using the action So again. Figure 1 shows the ground-state probability 
densities. The crosses represent the average over 340 iterations, and the circles over 
the last 140 iterations, after the equilibrium has been reached. The full curve represents 
the exact result. Significant discrepancies are seen between this simulation and  exact 
results, especially in the small-r region. In figure 2 the ground-state energy is plotted 
as a function of the number of iterations, after the equilibrium has been reached. The 
exact result is E = - 1 .  In figure 3 the ground-state probability densities are presented 
after 300 iterations in equilibrium by using the modified action S. In Figure 4 the 
ground-state energy is plotted as a function of the number of iterations in equilibrium. 

For the exponential potential V = - B  exp(- r /d)  one can choose the parameters 
B and d, so that the condition (126) is satisfied or  not. 
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Figure 1. The ground-state probability densities for the Coulomb potential. The radial 
coordinate r is expressed in h = 1 units. The full curve is the exact result. The crosses 
represent the average over 340 iterations in simulation with the action So .  The circles are 
the average over the last 140 iterations in the same simulation. 
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Figure 2. The ground-state energy for the Coulomb potential as a function of the number 
of iterations in simulation with the action So .  
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Figure 3. The ground-state probability densities for the Coulomb potential. The full curve 
is the exact result. The circles represent the average over 300 iterations with the action S. 
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Figure 4. The ground-state energy for the Coulomb potential as a function of the number 
of iterations in simulation with the action S. 

For the choice B =  -3.972 and d = 1, the condition (126) is satisfied for the 
parameters a = 0.1, N = 200, assuming the particle mass m = 1. The exact ground-state 
energy is E = -0.5. Under these conditions, our simulation yields E = -0.52010.01 
by using the action So after 400 iterations in equilibrium. The respective ground-state 
probability densities are presented in figure 5. 

For the choice B = -29.365 and d = 0.25, and other parameters from the preceding 
example, the condition (12b) is not satisfied in the interval (0, $rM) where rM is the 



On the modification of the lattice action 5093 

0 
r 

Figure 5. The ground-state probability densities for the exponential potential with B = 
-3.972 and  d = I .  The full curve is the exact result. The circles represent the result of 
simulation with the action So. 
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Figure 6. The ground-state probability densities for the exponential  potential with B = 
-29.365 a n d  d = 0.25. The full curve is the exact result. The circles represent the result 
o f  simulation with the action S , , ,  The crosses are the result of simulation with the 
action S. 

probability distribution maximum. By using the action So in the simulation we obtain 
E = -2.95 f 0.05, while the exact energy is E = -2. Under the same conditions, the 
simulation with the action S gives E = -2.08*0.05. Figure 6 shows the respective 
ground-state probability densities. 

To conclude, in this paper we have derived the quadratic term in the lattice action 
for non-relativistic quantum systems and show the criterion of its importance, when 
the partition function is calculated by using the Monte Carlo method. The above 
numerical examples illustrate and support our analysis. 
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